CHAPTER 7

ELECTRICAL \& ELECTRONIC MEASUREMENTS

YEAR 2012

ONE MARK
MCQ 7.1 A periodic voltage waveform observed on an oscilloscope across a load is shown. A permanent magnet moving coil (PMMC) meter connected across the same load reads

(A) 4 V
(C) 8 V

MCQ 7.2 The bridge method commonly used for finding mutual inductance is
(A) Heaviside Campbell bridge
(B) Schering bridge
(C) De Sauty bridge
(D) Wien bridge

MCQ 7.3 For the circuit shown in the figure, the voltage and current expressions are $v(t)=E_{1} \sin (\omega t)+E_{3} \sin (3 \omega t)$ and
$i(t)=I_{1} \sin \left(\omega t-\phi_{1}\right)+I_{3} \sin \left(3 \omega t-\phi_{3}\right)+I_{5} \sin (5 \omega t)$
The average power measured by the wattmeter is

(A) $\frac{1}{2} E_{1} I_{1} \cos \phi_{1}$
(B) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{1} I_{3} \cos \phi_{3}+E_{1} I_{5}\right]$
(C) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{3} I_{3} \cos \phi_{3}\right]$
(D) $\frac{1}{2}\left[E_{1} I_{1} \cos \phi_{1}+E_{3} I_{1} \cos \phi_{1}\right]$

YEAR 2012
TWO MARKS
MCQ 7.4 An analog voltmeter uses external multiplier settings. With a multiplier setting of $20 \mathrm{k} \Omega$, it reads 440 V and with a multiplier setting of $80 \mathrm{k} \Omega$, it reads 352 V . For a multiplier setting of $40 \mathrm{k} \Omega$, the voltmeter reads
(A) 371 V
(B) 383 V
(C) 394 V
(D) 406 V

YEAR 2011
ONE MARK
MCQ 7.5 Consider the following statement
(1) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the current coil.
(2) The compensating coil of a low power factor wattmeter compensates the effect of the impedance of the voltage coil circuit.
(A) (1) is true but (2) is false
(B) (1) is false but (2) is true
(C) both (1) and (2) are true
(D) both (1) and (2) are false

MCQ 7.6 The bridge circuit shown in the figure below is used for the measurement of an unknown element Z_{X}. The bridge circuit is best suited when Z_{X} is a

(A) low resistance
(B) high resistance
(C) low Q inductor
(D) lossy capacitor

MCQ 7.7 A dual trace oscilloscope is set to operate in the ALTernate mode. The control input of the multiplexer used in the y-circuit is fed with a signal having a frequency equal to
(A) the highest frequency that the multiplexer can operate properly
(B) twice the frequency of the time base (sweep) oscillator
(C) the frequency of the time base (sweep) oscillator
(D) haif the frequency of the time base (sweep) oscillator

YEAR 2011
TWO MARKS
MCQ 7.8 A $4 \frac{1}{2}$ digit DMM has the error specification as: 0.2% of reading +10 counts. If a dc voltage of 100 V is read on its 200 V full scale, the maximum error that can be expected in the reading is
(A) $\pm 0.1 \%$
(B) $\pm 0.2 \%$
(C) $\pm 0.3 \%$
(D) $\pm 0.4 \%$

YEAR 2010
ONE MARK
MCQ 7.9 A wattmeter is connected as shown in figure. The wattmeter reads.

(A) Zero always
(B) Total power consumed by Z_{1} and Z_{2}
(C) Power consumed by Z_{1}
(D) Power consumed by Z_{2}

MCQ 7.10 An ammeter has a current range of 0-5 A, and its internal resistance is 0.2 Ω. In order to change the range to $0-25 \mathrm{~A}$, we need to add a resistance of
(A) 0.8Ω in series with the meter
(B) 1.0Ω in series with the meter
(C) 0.04Ω in parallel with the meter
(D) 0.05Ω in parallel with the meter

MCQ 7.11 As shown in the figure, a negative feedback system has an amplifier of gain 100 with $\pm 10 \%$ tolerance in the forward path, and an attenuator of value $9 / 100$ in the feedback path. The overall system gain is approximately :

(A) $10 \pm 1 \%$
(B) $10 \pm 2 \%$
(C) $10 \pm 5 \%$
(D) $10 \pm 10 \%$

YEAR 2010
MCQ 7.12 The Maxwell's bridge shown in the figure is at balance. The parameters of the inductive coil are.

(B) $L=R_{2} R_{3} / R_{4}, R=C_{4} R_{2} R_{3}$
(C) $R=R_{4} / R_{2} R_{3}, L=1 /\left(C_{4} R_{2} R_{3}\right)$
(D) $L=R_{4} / R_{2} R_{3}, R=1 /\left(C_{4} R_{2} R_{3}\right)$

YEAR 2009
ONE MARK
MCQ 7.13 The pressure coil of a dynamometer type wattmeter is
(A) Highly inductive
(B) Highly resistive
(C) Purely resistive
(D) Purely inductive

MCQ 7.14 The two inputs of a CRO are fed with two stationary periodic signals. In the X-Y mode, the screen shows a figure which changes from ellipse to circle and back to ellipse with its major axis changing orientation slowly and repeatedly. The following inference can be made from this.
(A) The signals are not sinusoidal
(B) The amplitudes of the signals are very close but not equal

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
(C) The signals are sinusoidal with their frequencies very close but not equal
(D) There is a constant but small phase difference between the signals

MCQ 7.15 The figure shows a three-phase delta connected load supplied from a 400V, $50 \mathrm{~Hz}, 3$-phase balanced source. The pressure coil (PC) and current coil (CC) of a wattmeter are connected to the load as shown, with the coil polarities suitably selected to ensure a positive deflection. The wattmeter reading will be

(A) 0
(C) 800 Watt
(4)
(B) 1600 Watt
(D) 400 Watt

MCQ 7.16 An average-reading digitalmulti-meter reads 10 V when fed with a triangular wave, symmetric about the time-axis. For the same input an rms-reading meter will read
(A) $\frac{20}{\sqrt{3}}$
ค品 (B) $\frac{10}{\sqrt{3}}$
(C) $20 \sqrt{3}$
(D) $10 \sqrt{3}$

YEAR 2008
ONE MARK
MCQ 7.17 Two 8-bit ADCs, one of single slope integrating type and other of successive approximate type, take T_{A} and T_{B} times to convert 5 V analog input signal to equivalent digital output. If the input analog signal is reduced to 2.5 V , the approximate time taken by the two ADCs will respectively, be
(A) T_{A}, T_{B}
(B) $T_{A} / 2, T_{B}$
(C) $T_{A}, T_{B} / 2$
(D) $T_{A} / 2, T_{B} / 2$

YEAR 2008

TWO MARKS
MCQ 7.18 Two sinusoidal signals $p\left(\omega_{1}, t\right)=A \sin \omega_{1} t$ and $q\left(\omega_{2} t\right)$ are applied to X and Y inputs of a dual channel CRO. The Lissajous figure displayed on the screen shown below :

The signal $q\left(\omega_{2} t\right)$ will be represented as

(A) $q\left(\omega_{2} t\right)=A \sin \omega_{2} t, \omega_{2}=2 \omega_{1}$
(B) $q\left(\omega_{2} t\right)=A \sin \omega_{2} t, \omega_{2}=\omega_{1} / 2$
(C) $q\left(\omega_{2} t\right)=A \cos \omega_{2} t, \omega_{2}=2 \omega_{1}$
(D) $q\left(\omega_{2} t\right)=A \cos \omega_{2} t, \omega_{2}=\omega_{1} / 2$

MCQ 7.19 The ac bridge shown in the figure is used to measure the impedance Z.

If the bridge is balanced for oscillator frequency $f=2 \mathrm{kHz}$, then the impedance Z will be
(A) $(260+j 0) \Omega$
(B) $(0+j 200) \Omega$
(C) $(260-j 200) \Omega$
help
(D) $(260+j 200) \Omega$

YEAR 2007

MCQ 7.20 The probes of a non-isolated, two channel oscillocope are clipped to points A, B and C in the circuit of the adjacent figure. $V_{i n}$ is a square wave of a suitable low frequency. The display on Ch_{1} and Ch_{2} are as shown on the right. Then the "Signal" and "Ground" probes S_{1}, G_{1} and S_{2}, G_{2} of Ch_{1} and Ch_{2} respectively are connected to points :

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
(A) A, B, C, A
(B) A, B , C, B
(C) C, B, A, B
(D) $\mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{C}$

YEAR 2007
TWO MARKS
MCQ 7.21 A bridge circuit is shown in the figure below. Which one of the sequence given below is most suitable for balancing the bridge ?

(A) First adjust R_{4}, and then adjust R_{1}
(B) First adjust R_{2}, and then adjust R_{3}
(C) First adjust R_{2}, and then adjust R_{4}
(D) First adjust R_{4}, and then adjust R_{2}

YEAR 2006

ONE MARK

MCQ 7.22 The time/div and voltage/div axes of an oscilloscope have been erased. A student connects a $1 \mathrm{kHz}, 5 \mathrm{~V}$ p-p square wave calibration pulse to channel- 1 of the scope and observes the screen to be as shown in the upper trace of the figure. An unknown signal is connected to channel-2(lower trace) of the scope. It the time/div and $\mathrm{V} /$ div on both channels are the same, the amplitude ($\mathrm{p}-\mathrm{p}$) and period of the unknown signal are respectively

(A) $5 \mathrm{~V}, 1 \mathrm{~ms}$
(B) $5 \mathrm{~V}, 2 \mathrm{~ms}$
(C) $7.5 \mathrm{~V}, 2 \mathrm{~ms}$
(D) $10 \mathrm{~V}, 1 \mathrm{~ms}$

MCQ 7.23 A sampling wattmeter (that computes power from simultaneously sampled values of voltage and current) is used to measure the average power of a load. The peak to peak voltage of the square wave is 10 V and the current is a triangular wave of $5 \mathrm{~A} \mathrm{p}-\mathrm{p}$ as shown in the figure. The period is 20 ms . The reading in W will be

(A) 0 W
(B) 25 W
(C) 50 W
(D) 100 W

YEAR 2006

TWO MARKS
MCQ 7.24 A current of $-8+6 \sqrt{2}\left(\sin \omega t+30^{\circ}\right)$ A is passed through three meters. They are a centre zero PMMC meter, a true rms meter and a moving iron instrument. The respective reading (in A) will be
(A) $8,6,10$
(C) $-8,10,10$

(B) $8,6,8$
(D) $-8,2,2$

MCQ 7.25 A variable w is related to three other variables x, y, z as $w=x y / z$. The variables are measured with meters of accuracy $\pm 0.5 \%$ reading, $\pm 1 \%$ of full scale value and $\pm 1.5 \%$ reading. The actual readings of the three meters are 80,20 and 50 with 100 being the full scale value for all three. The maximum uncertainty in the measurement of w will be
(A) $\pm 0.5 \% \mathrm{rdg}$
(B) $\pm 5.5 \% \mathrm{rdg}$
(C) $\pm 6.7 \mathrm{rdg}$
(D) $\pm 7.0 \mathrm{rdg}$

MCQ 7.26 A 200/1 Current transformer (CT) is wound with 200 turns on the secondary on a toroidal core. When it carries a current of 160 A on the primary, the ratio and phase errors of the CT are found to be -0.5% and 30 minutes respectively. If the number of secondary turns is reduced by 1 new ratioerror (\%) and phase-error (min) will be respectively
(A) $0.0,30$
(B) $-0.5,35$
(C) $-1.0,30$
(D) $-1.0,25$

MCQ 7.27 $\quad R_{1}$ and R_{4} are the opposite arms of a Wheatstone bridge as are R_{3} and R_{2}. The source voltage is applied across R_{1} and R_{3}. Under balanced conditions which one of the following is true
(A) $R_{1}=R_{3} R_{4} / R_{2}$
(B) $R_{1}=R_{2} R_{3} / R_{4}$
(C) $R_{1}=R_{2} R_{4} / R_{3}$
(D) $R_{1}=R_{2}+R_{3}+R_{4}$

YEAR 2005

ONE MARK
MCQ 7.28 The Q-meter works on the principle of
(A) mutual inductance
(B) self inductance
(C) series resonance
(D) parallel resonance

MCQ 7.29 A PMMC voltmeter is connected across a series combination of DC voltage source $V_{1}=2 \mathrm{~V}$ and AC voltage source $V_{2}(t)=3 \sin (4 t) \mathrm{V}$. The meter reads
(A) 2 V
(B) 5 V
(C) $(2+\sqrt{3} / 2) \mathrm{V}$
(D) $(\sqrt{17} / 2) V$

MCQ 7.30 A digital-to-analog converter with a full-scale output voltage of 3.5 V has a resolution close to 14 mV . Its bit size is
(A) 4
(B) 8
(C) 16
(D) 32

YEAR 2005
TWO MARKS
MCQ 7.31 The simultaneous application of sighals $x(t)$ and $y(t)$ to the horizontal and vertical plates, respectively, of an oscilloscope, produces a vertical figure-of- 8 display. If P and Q are constants and $x(t)=\mathrm{P} \sin \left(4 t+30^{\circ}\right)$, then $y(t)$ is equal to
(A) $\mathrm{Q} \sin \left(4 t-30^{\circ}\right)$
(B) $\mathrm{Q} \sin \left(2 t+15^{\circ}\right)$
(C) $\mathrm{Q} \sin \left(8 t+60^{\circ}\right)$
(D) $\mathrm{Q} \sin \left(4 t+30^{\circ}\right)$

MCQ 7.32 A DC ammeter has a resistance of 0.1Ω and its current range is $0-100 \mathrm{~A}$. If the range is to be extended to $0-500 \mathrm{~A}$, then meter required the following shunt resistance
(A) 0.010Ω
(B) 0.011Ω
(C) 0.025Ω
(D) 1.0Ω

MCQ 7.33 The set-up in the figure is used to measure resistance R.The ammeter and voltmeter resistances are 0.01Ω and 2000Ω, respectively. Their readings are 2 A and 180 V , respectively, giving a measured resistances of 90Ω The percentage error in the measurement is

(A) 2.25%
(B) 2.35%
(C) 4.5%
(D) 4.71%

MCQ 7.34 A 1000 V DC supply has two 1-core cables as its positive and negative leads : their insulation resistances to earth are $4 \mathrm{M} \Omega$ and $6 \mathrm{M} \Omega$, respectively, as shown in the figure. A voltmeter with resistance $50 \mathrm{k} \Omega$ is used to measure the insulation of the cable. When connected between the positive core and earth, then voltmeter reads

(A) 8 V
(C) 24 V
وate
(B) 16 V
(D) 40 V

MCQ 7.35 Two wattmeters, which are connected to measure the total power on a three-phase system supplying a balanced load, read 10.5 kW and -2.5 kW , respectively. The total power and the power factor, respectively, are
(A) $13.0 \mathrm{~kW}, 0.334$
(B) $13.0 \mathrm{~kW}, 0.684$
(C) $8.0 \mathrm{~kW}, 0.52$
(D) $8.0 \mathrm{~kW}, 0.334$

YEAR 2004

MCQ 7.36 A dc potentiometer is designed to measure up to about 2 V with a slide wire of 800 mm . A standard cell of emf 1.18 V obtains balance at 600 mm . A test cell is seen to obtain balance at 680 mm . The emf of the test cell is
(A) 1.00 V
(B) 1.34 V
(C) 1.50 V
(D) 1.70 V

MCQ 7.37 The circuit in figure is used to measure the power consumed by the load. The current coil and the voltage coil of the wattmeter have 0.02Ω and 1000 Ω resistances respectively. The measured power compared to the load power will be

(A) 0.4% less
(B) 0.2% less
(C) 0.2% more
(D) 0.4% more

MCQ 7.38 A galvanometer with a full scale current of 10 mA has a resistance of 1000 Ω. The multiplying power (the ratio of measured current to galvanometer current) of 100Ω shunt with this galvanometer is
(A) 110
(B) 100
(C) 11
(D) 10

MCQ 7.39 A CRO probe has an impedance of $500 \mathrm{k} \Omega$ in parallel with a capacitance of 10 pF . The probe is used to measure the voltage between P and Q as shown in figure. The measured voltage will be

(A) 3.53 V
(B) 4.37 V
(C) 4.54 V
(D) 5.00 V

MCQ 7.40 A moving coil of a meter has 100 turns, and a length and depth of 10 mm and 20 mm respectively. It is positioned in a uniform radial flux density of 200 mT . The coil carries a current of 50 mA . The torque on the coil is
(A) $200 \mu \mathrm{Nm}$
(B) $100 \mu \mathrm{Nm}$
(C) $2 \mu \mathrm{Nm}$
(D) $1 \mu \mathrm{Nm}$

MCQ 7.41 A dc A-h meter is rated for $15 \mathrm{~A}, 250 \mathrm{~V}$. The meter constant is $14.4 \mathrm{~A}-\mathrm{sec} /$ rev. The meter constant at rated voltage may be expressed as
(A) $3750 \mathrm{rev} / \mathrm{kWh}$
(B) $3600 \mathrm{rev} / \mathrm{kWh}$
(C) $1000 \mathrm{rev} / \mathrm{kWh}$
(D) $960 \mathrm{rev} / \mathrm{kWh}$

MCQ 7.42 A moving iron ammeter produces a full scale torque of $240 \mu \mathrm{Nm}$ with a deflection of 120° at a current of 10 A . The rate of change of self induction
($\mu \mathrm{H} /$ radian) of the instrument at full scale is
(A) $2.0 \mu \mathrm{H} /$ radian
(B) $4.8 \mu \mathrm{H} /$ radian
(C) $12.0 \mu \mathrm{H} /$ radian
(D) $114.6 \mu \mathrm{H} /$ radian

MCQ 7.43 A single-phase load is connected between R and Y terminals of a 415 V , symmetrical, 3 -phase, 4 -wire system with phase sequence RYB. A wattmeter is connected in the system as shown in figure. The power factor of the load is 0.8 lagging. The wattmeter will read

(A) -795 W
(B) -597 W
(C) +597 W
(D) +795 W

MCQ 7.44 A 50 Hz , bar primary CT has a secondary with 500 turns. The secondary supplies 5 A current into a purely resistive burden of 1Ω. The magnetizing ampere-turns is 200 . The phase angle between the primary and second current is
(A) 4.6°

(B) 85.4°
(C) 94.6°
(D) 175.4°

MCQ 7.45 The core flux in the CT of Prob Q.44, under the given operating conditions is
(A) 0
(B) $45.0 \mu \mathrm{~Wb}$
(C) 22.5 mWb
(D) 100.0 mWb

YEAR 2003

MCQ 7.46 A Manganin swap resistance is connected in series with a moving coil ammeter consisting of a milli-ammeter and a suitable shunt in order to
(A) minimise the effect of temperature variation
(B) obtain large deflecting torque
(C) reduce the size of the meter
(D) minimise the effect of stray magnetic fields

MCQ 7.47 The effect of stray magnetic field on the actuating torque of a portable instrument is maximum when the operating field of the instrument and the stray fields are
(A) perpendicular
(B) parallel
(C) inclined at 60°
(D) inclined at 30°

MCQ 7.48 A reading of 120 is obtained when standard inductor was connected in the circuit of a Q-meter and the variable capacitor is adjusted to value of 300 pF . A lossless capacitor of unknown value C_{x} is then connected in parallel with the variable capacitor and the same reading was obtained when the variable capacitor is readjusted to a value of 200 pF . The value of C_{x} in pF is
(A) 100
(B) 200
(C) 300
(D) 500

YEAR 2003

MCQ 7.49 The simplified block diagram of a 10 -bit A / D converter of dual slope integrator type is shown in figure. The 10-bit counter at the output is clocked by a 1 MHz clock. Assuming negligible timing overhead for the control logic, the maximum frequency of the analog signal that can be converted using this A / D converter is approximately

(A) 2 kHz
help
(B) 1 kHz
(C) 500 Hz
(D) 250 Hz

MCQ 7.50 The items in Group-I represent the various types of measurements to be made with a reasonable accuracy using a suitable bridge. The items in Group-II represent the various bridges available for this purpose. Select the correct choice of the item in Group-II for the corresponding item in Group-I from the following

List-I

P. Resistance in the milli-ohm 1. Wheatstone Bridge range
Q. Low values of Capacitance
R. Comparison of resistance which are nearly equal
S. Inductance of a coil with a 4. Wien's Bridge large time-constant
5. Hay's Bridge
6. Carey-Foster Bridge

Codes :

(A) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=6, \mathrm{~S}=5$
(B) $\mathrm{P}=2, \mathrm{Q}=6, \mathrm{R}=4, \mathrm{~S}=5$
(C) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=5, \mathrm{~S}=4$
(D) $\mathrm{P}=1, \mathrm{Q}=3, \mathrm{R}=2, \mathrm{~S}=6$

MCQ 7.51 A rectifier type ac voltmeter of a series resistance R_{s}, an ideal full-wave rectifier bridge and a PMMC instrument as shown in figure. The internal. resistance of the instrument is 100Ω and a full scale deflection is produced by a dc current of 1 mA . The value of R_{s} required to obtain full scale deflection with an ac voltage of 100 V (rms) applied to the input terminals is

(A) 63.56Ω
(B) 69.93Ω
(C) 89.93Ω
(D) $141.3 \mathrm{k} \Omega$

MCQ 7.52 A wattmeter reads 400 W when its current coil is connected in the R-phase and its pressure coil is connectedbetween this phase and the neutral of a symmetrical 3 -phase system supplying a balanced star connected 0.8 p.f. inductive load. This phase sequence is RYB. What will be the reading of this wattmeter if its pressure coil alone is reconnected between the B and Y phases, all other connections remaining as before ?
(A) 400.0
(B) 519.6
(C) 300.0
(D) 692.8

MCQ 7.53 The inductance of a certain moving-iron ammeter is expressed as $L=10+3 \theta-\left(\theta^{2} / 4\right) \mu H$, where θ is the deflection in radians from the zero position. The control spring torque is $25 \times 10^{-6} \mathrm{Nm} /$ radian. The deflection of the pointer in radian when the meter carries a current of 5 A , is
(A) 2.4
(B) 2.0
(C) 1.2
(D) 1.0

MCQ 7.54 A $500 \mathrm{~A} / 5 \mathrm{~A}, 50 \mathrm{~Hz}$ transformer has a bar primary. The secondary burden is a pure resistance of 1Ω and it draws a current of 5 A . If the magnetic core requires 250 AT for magnetization, the percentage ratio error is
(A) 10.56
(B) -10.56
(C) 11.80
(D) -11.80

MCQ 7.55 The voltage-flux adjustment of a certain 1-phase 220 V induction watt-hour meter is altered so that the phase angle between the applied voltage and the flux due to it is $85^{\circ}\left(\right.$ instead of $\left.90^{\circ}\right)$. The errors introduced in the reading of this meter when the current is 5 A at power factor of unity and 0.5 lagging are respectively
(A) $3.8 \mathrm{~mW}, 77.4 \mathrm{~mW}$
(B) $-3.8 \mathrm{~mW},-77.4 \mathrm{~mW}$
(C) $-4.2 \mathrm{~W},-85.1 \mathrm{~W}$
(D) $4.2 \mathrm{~W}, 85.1 \mathrm{~W}$

MCQ 7.56 Group-II represents the figures obtained on a CRO screen when the voltage signals $V_{\mathrm{x}}=V_{\mathrm{xm}} \sin \omega t$ and $V_{\mathrm{y}}=V_{\mathrm{ym}} \sin (\omega t+\Phi)$ are given to its X and Y plates respectively and Φ is changed. Choose the correct value of Φ from Group-I to match with the corresponding figure of Group-II.

Group-I

P. $\Phi=0$
Q. $\Phi=\pi / 2$
R. $\pi<\Phi<3 \pi / 2$
S. $\Phi=3 \pi / 2$

Group-II
2.

4.

6.

Codes :

(A) $\mathrm{P}=1, \mathrm{Q}=3, \mathrm{R}=6, \mathrm{~S}=5$
(B) $\mathrm{P}=2, \mathrm{Q}=6, \mathrm{R}=4, \mathrm{~S}=5$
(C) $\mathrm{P}=2, \mathrm{Q}=3, \mathrm{R}=5, \mathrm{~S}=4$
(D) $\mathrm{P}=1, \mathrm{Q}=5, \mathrm{R}=6, \mathrm{~S}=4$

YEAR 2002 ONE MARK

MCQ 7.57 Two in-phase, 50 Hz sinusoidal waveforms of unit amplitude are fed into channel-1 and channel-2 respectively of an oscilloscope. Assuming that the voltage scale, time scale and other settings are exactly the same for both the channels, what would be observed if the oscilloscope is operated in X-Y mode ?
(A) A circle of unit radius
(B) An ellipse
(C) A parabola
(D) A straight line inclined at 45° with respect to the x -axis.

MCQ 7.58 The line-to-line input voltage to the 3-phase, 50 Hz , ac circuit shown in Figure is 100 V rms. Assuming that the phase sequence is RYB, the wattmeters would read.

(A) $W_{1}=886 \mathrm{~W}$ and $W_{2}=886 \mathrm{~W}$
(B) $W_{1}=500 \mathrm{~W}$ and $W_{2}=500 \mathrm{~W}$
(C) $W_{1}=0 \mathrm{~W}$ and $W_{2}=1000 \mathrm{~W}$
(D) $W_{1}=250 \mathrm{~W}$ and $W_{2}=750 \mathrm{~W}$

YEAR 2001
ONE MARK
MCQ 7.59 If an energy meter disc makes 10 fevolutions in 100 seconds when a load of 450 W is connected to it, the meter constant (in rev $/ \mathrm{kWh}$) is
(A) 1000
(B) 500
(C) 1600
(D) 800

MCQ 7.60 The minimum number of wattmeter(s) required to measure 3-phase, 2-wire balanced or unbalanced power is
(A) 1
(B) 2
(C) 3
(D) 4

MCQ 7.61 A $100 \mu A$ ammeter has an internal resistance of 100Ω. For extending its range to measure $500 \mu A$, the shunt required is of resistance (in Ω)
(A) 20.0
(B) 22.22
(C) 25.0
(D) 50.0

MCQ 7.62 Resistance R_{1} and R_{2} have, respectively, nominal values of 10Ω and 5Ω , and tolerance of $\pm 5 \%$ and $\pm 10 \%$. The range of values for the parallel combination of R_{1} and R_{2} is
(A) 3.077Ω to 3.636Ω
(B) 2.805Ω to 3.371Ω
(C) 3.237Ω to 3.678Ω
(D) 3.192Ω to 3.435Ω

SOLUTIONS

SOL 7.1 Option (A) is correct.
PMMC instrument reads average (dc) value.

$$
\begin{aligned}
V_{\text {avg }} & =\frac{1}{T} \int_{0}^{T} v(t) d t=\frac{1}{20 \times 10^{-3}} \int_{0}^{20} v(t) d t \\
& =\frac{1}{20}\left[\int_{0}^{10} t d t+\int_{10}^{12}(-5) d t+\int_{12}^{20} 5 d t\right] \\
& =\frac{1}{20}\left(\left[\frac{t^{2}}{2}\right]_{0}^{10}-5[t]_{10}^{12}+5[t]_{12}^{20}\right) \\
& =\frac{1}{20}[50-5(2)+5(8)]=\frac{80}{20}=4 \mathrm{~V}
\end{aligned}
$$

SOL 7.2 Option (A) is correct.
Heaviside mutual inductance bridge measures mutual inductance is terms of a known self-inductance.

SOL 7.3 Option (C) is correct.
Let $\omega t=\theta$, we have instaneous voltage and current as follows.

$$
\begin{aligned}
v(t) & =E_{1} \sin \theta+E_{3} \sin 3 \theta \\
i(t) & =I_{1} \sin \left(\theta-\phi_{1}\right)+I_{3} \sin \left(3 \theta-\phi_{3}\right)+I_{5} \sin (5 \theta)
\end{aligned}
$$

We know that wattmeter reads the average power, which is gives as

$$
\begin{equation*}
P=\frac{1}{2 \pi} \int_{0}^{2 \pi} v(t) i(t) d \theta \tag{i}
\end{equation*}
$$

We can solve this integration using following results.
(i) $\frac{1}{2 \pi} \int_{0}^{2 \pi} A \sin (\theta+\alpha) \cdot B \sin (\theta+\beta) d \theta=\frac{1}{2} A B \cos (\alpha-\beta)$
(ii) $\frac{1}{2 \pi} \int_{0}^{2 \pi} A \sin (\theta+\alpha) \cdot B \cos (\theta+\alpha) d \theta=\frac{1}{2} A B \sin (\alpha-\beta)$
(iii) $\frac{1}{2 \pi} \int_{0}^{2 \pi} A \sin (m \theta+\alpha) \cdot B \cos (n \theta+\beta) d \theta=0$
(iv) $\frac{1}{2 \pi} \int_{0}^{2 \pi} A \sin (m \theta+\alpha) \cdot B \cos (n \theta+\beta) d \theta=0$

Result (iii) and (iv) implies that power is transferred between same harmonics of voltages and currents. Thus integration of equation (i) gives.

$$
P=\frac{1}{2} E_{1} I_{1} \cos \phi+\frac{1}{2} E_{3} I_{3} \cos \phi_{3}
$$

SOL 7.4 Option (D) is correct.
A voltmeter with a multiplier is shown in figure below.
GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

Here $\quad I_{m}=$ Fully scale deflection current of meter.

$$
R_{m}=\text { Internal resistance of meter }
$$

$R_{s}=$ Voltage across the meter
$V=$ Full range voltage of instrument
$V_{m}=I_{m} R_{m}$
$V=I_{m}\left(R_{m}+R_{s}\right)$
$\frac{V}{V_{m}}=\frac{R_{m}+R_{s}}{R_{m}}=1+\frac{R_{s}}{R_{m}}$
Here when, $\quad R_{s 1}=20 \mathrm{k} \Omega, V_{m 1}=440 \mathrm{~V}$
So,

$$
\begin{equation*}
\frac{V}{440}=1+\frac{20 \mathrm{k}}{R_{m}} \tag{i}
\end{equation*}
$$

Solving equation (i) and (ii), we get

$$
V=480 \mathrm{~V}, R_{m}=220 \mathrm{k} \Omega
$$

So when

$$
\begin{aligned}
R_{s 3} & =40 \mathrm{k} \Omega, V_{m 3}=? \\
\frac{480}{V_{m 3}} & =1+\frac{40 \mathrm{k}}{220 \mathrm{k}} \Rightarrow V_{m 2} \simeq 406 \mathrm{~V}
\end{aligned}
$$

SOL 7.5 Option (A) is correct.
The compensating coil compensation the effect of impedance of current coil.

SOL 7.6 Option (C) is correct.
Let

$$
Z_{1}=R_{1} \| j \omega C_{1}
$$

so admittance

$$
Y_{1}=\frac{1}{Z_{1}}=\frac{1}{R_{1}}+j \omega C_{1}
$$

$$
Z_{2}=R_{2} \text { and } Z_{4}=R_{4}
$$

Let

$$
Z_{X}=R_{X}+j \omega L_{X}(\text { Unknown impedance })
$$

For current balance condition of the Bridge

$$
Z_{2} Z_{4}=Z_{X} Z_{1}=\frac{Z_{X}}{Y_{1}}
$$

Let

$$
\begin{aligned}
Z_{X} & =Z_{2} Z_{4} Y_{1} \\
R_{X}+j \omega L_{X} & =R_{2} R_{4}\left(\frac{1}{R_{1}}+j \omega C_{1}\right)
\end{aligned}
$$

Equating imaginary and real parts

$$
R_{X}=\frac{R_{2} R_{4}}{R_{1}} \quad \text { and } L_{X}=R_{2} R_{4} C_{1}
$$

Quality factor of inductance which is being measured

$$
Q=\frac{\omega L_{X}}{R_{X}}=\omega R_{1} C_{1}
$$

From above equation we can see that for measuring high values of Q we need a large value of resistance R_{4} which is not suitable. This bridge is used for measuring low Q coils.r
Note: We can observe directly that this is a maxwell's bridge which is suitable for low values of Q (i.e. $Q<10$)

SOL 7.7 Option (C) is correct.
In the alternate mode it switches between channel A and channel B, letting each through for one cycle of horizontal sweep as shown in the figure.

SOL 7.8 Option (C) is correct.
$4 \frac{1}{2}$ digit display will read from 000.00 to 199.99 So error of 10 counts is equal to $= \pm 0.10 \mathrm{~V}$
For 100 V , the maximum error is

$$
e= \pm(100 \times 0.002+0.1)= \pm 0.3 \mathrm{~V}
$$

Percentage error

$$
= \pm \frac{0.3 \times 100}{100} \%= \pm 0.3 \% \text { of reading }
$$

SOL 7.9 Option (D) is correct.
Since potential coil is applied across Z_{2} as shown below

SOL 7.10

SOL 7.11 Option (A) is correct.
Overall gain of the system is

$$
g=\frac{100}{1+100\left(\frac{9}{100}\right)}=10 \text { (zero error) }
$$

Gain with error

$$
g=\frac{100+10 \%}{1+(100+10 \%)\left(\frac{9}{100}\right)}=\frac{110}{1+\frac{110 \times 9}{100}}=10.091
$$

error $\Delta g=10.091-10 \simeq 0.1$
Similarly

$$
\begin{aligned}
g & =\frac{100-10 \%}{1+(100-10 \%) \frac{9}{100}}=\frac{90}{1+90 \times \frac{9}{100}} \\
& =9.89
\end{aligned}
$$

error $\Delta g=9.89-10 \simeq-0.1$
So gain $g=10 \pm 0.1=10 \pm 1 \%$

SOL 7.12 Option (A) is correct.
At balance condition

$$
\begin{aligned}
(R+j \omega L)\left(R_{4} \| \frac{-j}{\omega C_{4}}\right) & =R_{2} R_{3} \\
(R+j \omega L) \frac{\frac{-j R_{4}}{\omega C_{4}}}{\left(R_{4}-\frac{j}{\omega C_{4}}\right)} & =R_{2} R_{3} \\
\frac{-j R R_{4}}{\omega C_{4}}+\frac{\omega L R_{4}}{\omega C_{4}} & =R_{2} R_{3} R_{4}-\frac{j R_{2} R_{3}}{\omega C_{4}} \\
\frac{-j R R_{4}}{\omega C_{4}}+\frac{L R_{4}}{C_{4}} & =R_{2} R_{3} R_{4}-\frac{j R_{2} R_{3}}{\omega C_{4}}
\end{aligned}
$$

Comparing real \& imaginary parts.

$$
\begin{aligned}
\frac{R R_{4}}{\omega C_{4}} & =\frac{R_{2} R_{3}}{\omega C_{4}} \\
R & =\frac{R_{2} R_{3}}{R_{4}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{L R_{4}}{C_{4}} & =R_{2} R_{3} R_{4} \\
L & =R_{2} R_{3} C_{4}
\end{aligned}
$$

SOL 7.13 Option (B) is correct.
Since Potential coil is connected across the load terminal, so it should be highly resistive, so that all the voltage appears across load.

SOL 7.14 Option (D) is correct.
A circle is produced when there is a 90° phase difference between vertical and horizontal inputs.

SOL 7.15 Option (C) is correct.
Wattmeter reading $P=V_{P C} I_{C C}$
$V_{P C} \rightarrow$ Voltage across potential coil.
$I_{C C} \rightarrow$ Current in current coil.

$$
\begin{aligned}
V_{P C} & =V_{b c}=400 \angle-120^{\circ} \\
I_{C C} & =I_{a c}=\frac{400 \angle 120^{\circ}}{100}=4 \angle 120^{\circ} \\
P & =400 \angle-120^{\circ} \times 4 \angle 120^{\circ} \\
& =1600 \angle 240^{\circ}=1600 \times \frac{1}{2}=800 \mathrm{Watt}
\end{aligned}
$$

Power

SOL 7.16 Option (D) is correct.
Average value of a triangular wave

$$
V_{a v}=\frac{V_{m}}{3}
$$

rms value $V_{m s}=\frac{V_{m}}{\sqrt{3}}$
Given that

$$
V_{a v}=\frac{V_{m}}{3}=10 \mathrm{~V}
$$

So

$$
V_{r m s}=\frac{V_{m}}{\sqrt{3}}=\sqrt{3} V_{a v}=10 \sqrt{3} \mathrm{~V}
$$

SOL 7.17 Option (A) is correct.
Conversion time does not depend on input voltage so it remains same for both type of ADCs.

SOL 7.18 Option (D) is correct.

Frequency ratio $\frac{f_{Y}}{f_{X}}=\frac{\text { meeting points of horizontal tangents }}{\text { meeting points of vertical tangents }}$

$$
\begin{aligned}
\frac{f_{Y}}{f_{X}} & =\frac{2}{4} \\
f_{Y} & =\frac{1}{2}\left(f_{X}\right) \\
\omega_{2} & =\omega_{1} / 2
\end{aligned}
$$

Since the Lissajous figures are ellipse, so there is a phase difference of 90° exists between vertical and horizontal inputs.

So

$$
q\left(\omega_{2} t\right)=A \cos \omega_{2} t, \omega_{2}=\omega_{1} / 2
$$

SOL 7.19 Option (A) is correct. Impedance of different branches is given as

$$
\begin{aligned}
Z_{A B} & =500 \Omega \\
Z_{B C} & =\frac{1}{j \times 2 \pi \times 2 \times 10^{3} \times 0.398 \mu F}+300 \Omega \\
& \simeq(-200 j+300) \Omega \\
Z_{A D} & =j \times 2 \pi \times 2 \times 10^{3} \times 15.91 \mathrm{mH}+300 \Omega \\
& \simeq(200 j+300) \Omega
\end{aligned}
$$

To balance the bridge

$$
\begin{aligned}
Z_{A B} Z_{C D} & =Z_{A D} Z_{B C} \\
500 Z & =(200 j+300)(-200 j+300) \\
500 Z & =130000 \\
Z & =(260+j 0) \Omega
\end{aligned}
$$

SOL 7.20 Option (B) is correct.
Since both the waveform appeared across resistor and inductor are same so the common point is B. Signal Probe S_{1} is connecte with A, S_{2} is connected with C and both the grount probes G_{1} and G_{2} are connected with common point B.

SOL 7.21 Option (A) is correct.
To balance the bridge

$$
\begin{aligned}
\left(R_{1}+j X_{1}\right)\left(R_{4}-j X_{4}\right) & =R_{2} R_{3} \\
\left(R_{1} R_{4}+X_{1} X_{4}\right)+j\left(X_{1} R_{4}-R_{1} X_{4}\right) & =R_{2} R_{3}
\end{aligned}
$$

comparing real and imaginary parts on both sides of equations

$$
\begin{align*}
& R_{1} R_{4}+X_{1} X_{4}=R_{2} R_{3} \tag{1}\\
& X_{1} R_{4}-R_{1} X_{4}=0 \Rightarrow \frac{X_{1}}{X_{4}}=\frac{R_{1}}{R_{4}} \tag{2}
\end{align*}
$$

from eq(1) and (2) it is clear that for balancing the bridge first balance R_{4} and then R_{1}.

SOL 7.22 Option (C) is correct.
From the Calibration pulse we can obtain

$$
\begin{aligned}
& \frac{\text { Voltage }}{\text { Division }}(\triangle \mathrm{V})=\frac{5}{2}=2.5 \mathrm{~V} \\
& \frac{\text { Time }}{\text { Division }}(\triangle \mathrm{T})=\frac{1 \mathrm{~ms}}{4}=\frac{1}{4} \mathrm{msec}
\end{aligned}
$$

So amplitude (p-p) of unknown signal is

$$
V_{\mathrm{P}-\mathrm{P}}=\triangle \mathrm{V} \times 5=2.5 \times 5=7.5 \mathrm{~V}
$$

Time period $T=\triangle \mathrm{T} \times 8=\frac{1}{4} \times 8=2 \mathrm{~ms}$

SOL 7.23 Option (A) is correct. Reading of wattmeter (Power) in the circuit

$$
P_{a v}=\frac{1}{T} \int_{0}^{T} V I d t=\text { Common are between } V-I
$$

total common area $=0$ (Positive and negative area are equal) So $P_{a v}=0$

SOL 7.24 Option (C) is correct.

 PMMC instrument reads only dc value so$$
I_{\mathrm{PMMC}}=-8 \mathrm{~A}
$$

rms meter reads rms value so

$$
\begin{aligned}
I_{r m s} & =\sqrt{(-8)^{2}+\frac{(6 \sqrt{2})^{2}}{2}} \\
& =\sqrt{64+36}=10 \mathrm{~A}
\end{aligned}
$$

Moving iron instrument also reads rms value of current So

$$
I_{\mathrm{MI}}=10 \mathrm{~mA}
$$

Reading are $\left(I_{\mathrm{PMMC},} I_{r m s}, I_{\mathrm{MI}}\right)=(-8 \mathrm{~A}, 10 \mathrm{~A}, 10 \mathrm{~A})$

SOL 7.25 Option (D) is correct.

$$
\text { Given that } \begin{aligned}
\omega & =\frac{x y}{z} \\
\log \omega & =\log x+\log y-\log z
\end{aligned}
$$

Maximum error in ω

$$
\begin{aligned}
\% \frac{d \omega}{\omega} & = \pm \frac{d x}{x} \pm \frac{d y}{y} \pm \frac{d z}{z} \\
\frac{d x}{x} & = \pm 0.5 \% \text { reading }
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{y} & = \pm 1 \% \text { full scale } \\
& = \pm \frac{1}{100} \times 100= \pm 1 \\
\frac{d y}{y} & = \pm \frac{1}{20} \times 100= \pm 5 \% \text { reading } \\
\frac{d z}{z} & =1.5 \% \text { reading } \\
\% \frac{d \omega}{\omega} & = \pm 0.5 \% \pm 5 \% \pm 1.5 \%= \pm 7 \%
\end{aligned}
$$

SOL 7.26 Option () is correct.

SOL 7.27 Option (B) is correct.

In balanced condition there is no current in CD arm so $V_{C}=V_{D}$
Writing node equation at C and D

$$
\begin{aligned}
& \frac{V_{C}-V}{R_{1}}+\frac{V_{C}}{R_{3}}=0 \Rightarrow V_{C}=V\left(\frac{R_{3}}{R_{1}+R_{3}}\right) \\
& \frac{V_{0}-V}{R_{2}}+\frac{V_{D}}{R_{4}}=0 \Rightarrow V_{D}=V\left(\frac{R_{4}}{R_{2}+R_{4}}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
V\left(\frac{R_{3}}{R_{1}+R_{3}}\right) & =V\left(\frac{R_{4}}{R_{2}+R_{4}}\right) \\
R_{2} R_{3}+R_{3} R_{4} & =R_{1} R_{4}+R_{3} R_{4} \\
R_{1} & =R_{2} R_{3} / R_{4}
\end{aligned}
$$

SOL 7.28 Option (C) is correct. Q-meter works on the principle of series resonance.

At resonance $V_{C}=V_{L}$

$$
\begin{aligned}
\text { and } I & =\frac{V}{R} \\
\text { Quality factor } \mathrm{Q} & =\frac{\omega L}{R}=\frac{1}{\omega C R}=\frac{\omega L \times I}{R \times I}=\frac{V_{L}}{E}=\frac{V_{C}}{E}
\end{aligned}
$$

Thus, we can obtain Q

SOL 7.29 Option (A) is correct.
PMMC instruments reads DC value only so it reads 2 V .

SOL 7.30 Option (B) is correct.
Resolution of n-bit DAC $=\frac{V_{f s}}{2^{n}-1}$
So

$$
\begin{aligned}
14 m v & =\frac{3.5 \mathrm{~V}}{2^{n}-1} \\
2^{n}-1 & =\frac{3.5}{14 \times 10^{-3}} \\
2^{n}-1 & =250 \\
2^{n} & =251 \\
n & =8 \mathrm{bit}
\end{aligned}
$$

SOL 7.31
Option (B) is correct.
We can obtain the frequency ratio as following

$$
\begin{aligned}
\frac{f_{Y}}{f_{X}} & =\frac{\text { meeting points of horizontal tangents }}{\text { meeting points of vertical tangents }} \\
\frac{f_{Y}}{f_{X}} & =\frac{2}{4} \\
f_{Y} & =\frac{1}{2} f_{X}
\end{aligned}
$$

There should exist a phase difference $\left(15^{\circ}\right)$ also to produce exact figure of- 8 .

SOL 7.32 Option (C) is correct.
The configuration is shown below

It is given that $I_{m}=100 \mathrm{~A}$
Range is to be extended to $0-500 \mathrm{~A}$,

$$
I=500 \mathrm{~A}
$$

So,

$$
\begin{aligned}
I_{m} R_{m} & =\left(I-I_{m}\right) R_{s h} \\
100 \times 0.1 & =(500-100) R_{s h} \\
R_{s h} & =\frac{100 \times 0.1}{400}=0.025 \Omega
\end{aligned}
$$

SOL 7.33 Option (D) is correct.
The configuration is shown below

Current in voltmeter is given by

$$
I_{V}=\frac{E}{2000}=\frac{180}{2000}=.09 \mathrm{~A}
$$

$$
I+I_{V}=2 \mathrm{amp}
$$

So

$$
\mathrm{I}=2-.09=1.91 \mathrm{~V}
$$

$$
R=\frac{E}{I}=\frac{180}{1.91}=94.24 \Omega
$$

Ideally

$$
R_{0}=\frac{180}{2}=90 \Omega
$$

$$
\% \text { error }=\frac{R-R_{0}}{R_{0}} \times 100=\frac{94.24-90 \times 100}{90}=4.71 \%
$$

SOL 7.34 Option (A) is correct.
The measurement system is shown below

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

Voltmeter reading

$$
\begin{aligned}
V & =\left(\frac{1000}{6 \mathrm{M} \Omega+50 \mathrm{k} \Omega \| 4 \mathrm{M} \Omega}\right)(50 \mathrm{k} \Omega \| 4 \mathrm{M} \Omega) \\
& =\frac{1000}{6+.049} \times .049=8.10 \mathrm{~V}
\end{aligned}
$$

SOL 7.35 Option (D) is correct.
Total power $P=P_{1}+P_{2}=10.5-2.5=8 \mathrm{~kW}$
Power factor $=\cos \theta$
Where

$$
\begin{aligned}
\theta & =\tan ^{-1}\left[\sqrt{3}\left(\frac{P_{2}-P_{1}}{P_{2}+P_{1}}\right)\right]=\tan ^{-1}\left[\sqrt{3} \times \frac{-13}{8}\right] \\
& =-70.43^{\circ}
\end{aligned}
$$

Power factor $=\cos \theta=0.334$

SOL 7.36 Option (B) is correct.
so, for the dc potentiometer $E \propto l$

$$
\begin{aligned}
& \frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}} \\
& E_{2}=E_{1}\left(\frac{l_{1}}{l_{2}}\right)=(1.18) \times \frac{680}{600}=1.34 \mathrm{~V}
\end{aligned}
$$

Option (C) is correct.
Let the actual voltage and currentare I_{1} and V_{1} respectively, then

Current in CC is 20 A

$$
\begin{aligned}
20 & =I_{1}\left(\frac{1000}{1000+0.02}\right) \\
I_{1} & =20.0004 \mathrm{~A} \simeq 20 \mathrm{~A} \\
200 & =V_{1}-.02 \times 20=200.40
\end{aligned}
$$

Power measured $P_{m}=V_{1} I_{1}=20(200.40)=4008 \mathrm{~W}$
Load power $\quad P_{L}=20 \times 200=4000 \mathrm{~W}$

$$
\begin{aligned}
\% \text { Change } & =\frac{P_{m}-P_{L}}{P_{L}}=\frac{4008-4000}{4000} \times 100 \\
& =0.2 \% \mathrm{more}
\end{aligned}
$$

SOL 7.38 Option (C) is correct.
We have to obtain $n=\frac{I}{I_{1}}$

$$
\begin{aligned}
\frac{I_{1}}{I_{2}} & =\frac{R_{s h}}{R_{m}}=\frac{100}{1000}=\frac{1}{10} \\
I_{1}+I_{2} & =I \\
I_{1}+10 I_{1} & =I \\
11 I_{1} & =I \\
n & =\frac{I}{I_{1}}=11
\end{aligned}
$$

SOL 7.39 Option (B) is correct.
In the following configuration

Rectance $\quad X_{c}=\frac{1}{j \omega C}=\frac{1}{2 \pi \times 100 \times 10^{3} \times 10 \times 10^{-12}}$
writing node equation at P

$$
\begin{gathered}
\frac{V_{\mathrm{P}}-10}{100}+V_{\mathrm{P}}\left(\frac{1}{100}+\frac{1}{500}-\frac{j}{159}\right)=0 \\
10-V_{\mathrm{P}}=V_{P}(1.2-j 0.628) \\
10=(2.2-j 0.628) V_{\mathrm{P}} \\
V_{\mathrm{P}} \frac{10}{2.28}=4.38 \mathrm{~V}
\end{gathered}
$$

SOL 7.40 Option (A) is correct.
The torque on the coil is given by

$$
\tau=N I B A
$$

$N \rightarrow$ no. of turns,

$$
\mathrm{N}=100
$$

$I \rightarrow$ current,

$$
\mathrm{I}=50 \mathrm{~mA}
$$

$B \rightarrow$ magnetic field,
$\mathrm{B}=200 \mathrm{mT} A \rightarrow$ Area,

$$
\mathrm{A}=10 \mathrm{~mm} \times 20 \mathrm{~mm}
$$

So,

$$
\begin{aligned}
\tau & =100 \times 50 \times 10^{-3} \times 200 \times 10^{-3} \times 200 \times 10^{-3} \times 10^{-3} \\
& =200 \times 10^{-6} \mathrm{Nm}
\end{aligned}
$$

SOL 7.41 Option (C) is correct.
Meter constant (A-sec/rev) is given by

$$
\begin{aligned}
14.4 & =\frac{\mathrm{I}}{\text { speed }} \\
14.4 & =\frac{\mathrm{I}}{K \times \text { Power }}
\end{aligned}
$$

Where ' K ' is the meter constant in rev $/ \mathrm{kWh}$.

$$
\begin{aligned}
14.4 & =\frac{I}{K \times V I} \\
14.4 & =\frac{15}{K \times 15 \times 250} \\
K & =\frac{1}{250 \times 14.4} \\
K & =\frac{1}{\left(\frac{250 \times 14.4}{1000 \times 3600}\right)}=\frac{1000 \times 3600}{3600}=1000 \mathrm{rev} / \mathrm{kWh} .
\end{aligned}
$$

SOL 7.42 Option (B) is correct
For moving iron ameter full scale torque is given by

$$
\begin{aligned}
\tau_{C} & =\frac{1}{2} I^{2} \frac{d L}{d \theta} \\
10^{-6} & =\frac{1}{2}(10)^{2} \frac{d L}{d \theta}
\end{aligned}
$$

Change in inductance

$$
\frac{d L}{d \theta}=4.8 \mu \mathrm{H} / \mathrm{radian}
$$

SOL 7.43 Option (B) is correct.
In the figure

$$
\begin{aligned}
& V_{R Y}=415 \angle 30^{\circ} \\
& V_{B N}=\frac{415}{\sqrt{3}} \angle 120^{\circ}
\end{aligned}
$$

Current in current coil

$$
\begin{array}{rlr}
I_{C} & =\frac{V_{R Y}}{Z}=\frac{415 \angle 30^{\circ}}{100 \angle 36.87^{\circ}} \quad \therefore \text { pow } \\
& =4.15 \angle-6.87 & \cos \phi= \\
\text { Power } & =V I^{*}=\frac{415}{\sqrt{3}} \angle 120^{\circ} \times 4.15 \angle 6.87^{\circ}
\end{array}
$$

$$
=994.3 \angle 126.87^{\circ}
$$

Reading of wattmeter

$$
P=994.3\left(\cos 126.87^{\circ}\right)=994.3(-0.60)=-597 \mathrm{~W}
$$

SOL 7.44 Option (A) is correct.
For small values of phase angle

$$
\begin{aligned}
\frac{I_{P}}{I_{S}}=n \phi, \quad \phi & \rightarrow \text { Phase angle (radians) } \\
& \mathrm{n}
\end{aligned}
$$

Magnetizing ampere-turns $=200$
So primary current $I_{P}=200 \times 1=200 \mathrm{amp}$
Turns ratio $n=500$
Secondary current $I_{S}=5 \mathrm{amp}$
So $\quad \frac{200}{5}=500 \phi$
$\phi($ in degrees $)=\left(\frac{180}{\pi}\right)\left(\frac{200}{5 \times 500}\right)$

$$
\simeq 4.58^{\circ}
$$

SOL 7.45 Option (B) is correct.
Voltage appeared at secondary winding

Voltage induced is given by

$$
\begin{aligned}
E_{S} & =\sqrt{2} \pi f N \phi, \phi \rightarrow \text { flux } \\
5 & =\sqrt{2} \times 3.14 \times 50 \times 500 \times \phi \\
\phi & =\frac{5}{\sqrt{2} \times 3.14 \times 25 \times 10^{3}}=45 \times 10^{-6} \mathrm{wb}
\end{aligned}
$$

SOL 7.46 Option (A) is correct.
In PMCC instruments, as temperature increases the coil resistance increases. Swamp resistors are connected in series with the moving coil to provide temperature compensation. Swamping resistors is made of magnin, which has a zero-temperature coefficient.

SOL 7.47 Option () is correct.
Effect of stray magnetic field is maximum when the operating field and stray fields are parallel.

SOL 7.48 Option (A) is correct.

$$
\text { Let } \quad \begin{aligned}
C_{1} & =300 \mathrm{pF} \\
Q & =120=\frac{1}{\omega C_{1} R}
\end{aligned}
$$

Now when C_{x} is connected in parallel with variable resistor $C_{1}{ }^{\prime}=200 \mathrm{pF}$

$$
\begin{aligned}
Q & =120=\frac{1}{\omega\left(C_{1}^{\prime}+C_{x}\right) R} \\
C_{1} & =C_{1}^{\prime}+C_{x} \\
300 & =200+C_{x} \\
C_{x} & =100 \mathrm{pF}
\end{aligned}
$$

SOL 7.49 Option (B) is correct.
Maximum frequency of input in dual slop A/D converter is given as

$$
T_{m}=2^{n} T_{C}
$$

where
so

$$
\begin{aligned}
f_{m} & =\frac{1}{T_{m}} \rightarrow \text { maximum frquency of input } \\
f_{C} & =\frac{1}{T_{C}} \rightarrow \text { clock frequency } \\
f_{m} & =\frac{f_{C}}{2^{n}}, \quad n=10 \\
& =\frac{10^{6}}{1024}=1 \mathrm{kHz}(\text { approax })
\end{aligned}
$$

SOL 7.50 Option (A) is correct.
Kelvin Double bridge is used for measuring low values of resistances. $(\mathrm{P} \rightarrow 2)$ Low values of capacitances is precisely measured by schering bridge $(\mathrm{Q} \rightarrow 3)$ Inductance of a coil with large time constant or high quality factor is measured by hay's bridge $(R \rightarrow 5)$

SOL 7.51 Option (C) is correct.
Full scale deflection is produced by a dc current of 1 mA

$$
\left(I_{d c}\right)_{f s}=1 \mathrm{~mA}
$$

For full wave reactifier

$$
\begin{aligned}
\left(I_{d c}\right)_{f s} & =\frac{2 I_{m}}{\pi}, \quad I_{m} \rightarrow \text { peak value of ac current } \\
1 \mathrm{~mA} & =\frac{2 I_{m}}{3.14}
\end{aligned}
$$

$$
I_{m}=1.57 \mathrm{~mA}
$$

Full scale ac current

$$
\left(I_{r m s}\right)_{f s}=\frac{1.57}{\sqrt{2}}=1.11 \mathrm{~mA}
$$

$$
\begin{aligned}
V & =\left(R_{s}+R_{m}\right)\left(I_{r m s}\right)_{f s} \\
100 & =\left(R_{s}+100\right)(1.11 \mathrm{~mA}) \\
\frac{100}{(1.11 \mathrm{~mA})} & =R_{s}+100 \\
100 \times 900 & =R_{s}+100 \\
R_{s} & =89.9 \mathrm{k} \Omega
\end{aligned}
$$

SOL 7.52 Option (B) is correct.
First the current coil is connected in R-phase and pressure coil is connected between this phase and the neutral as shown below

reading of wattmeter

$$
\begin{align*}
W_{1} & =I_{P} V_{P} \cos \theta_{1}, \cos \theta_{1}=0.8 \Rightarrow \theta_{1}=36.86^{\circ} \\
400 & =I_{L} \frac{V_{L}}{\sqrt{3}} \cos \theta_{1} \\
400 & =\frac{I_{L} V_{L}}{\sqrt{3}} \times 0.8 \tag{1}
\end{align*}
$$

Now when pressure coil is connected between B and Y-phases, the circuit is

phasor diagram

angle $\quad \theta_{2}=23.14^{\circ}+30^{\circ}=54.14^{\circ} 2$
now wattmeter reading $W_{2}=V_{Y B} I_{L} \cos \theta_{2}$
from equation (1)

$$
\begin{aligned}
V_{L} I_{L} & =\frac{400 \times \sqrt{3}}{0.8} \\
W_{2} & =\frac{400}{0.8} \times \sqrt{3} \times \cos 53.14^{\circ} \\
& =519.5 \mathrm{~W}
\end{aligned}
$$

SOL 7.53 Option (C) is correct.
In a moving-iron ammeter control torque is given as

$$
\tau_{c}=K \theta=\frac{1}{2} I^{2} \frac{d L}{d \theta}
$$

Where
$K \rightarrow$ control spring constant
$\theta \rightarrow$ deflection
Given that $L=10+3 \theta-\frac{\theta^{2}}{4}$

$$
\frac{d L}{d \theta}=\left(3-\frac{\theta}{2}\right) \mu \mathrm{H} / \mathrm{rad}
$$

So,

$$
\begin{aligned}
\tau_{c}=\left(25 \times 10^{-6}\right) \theta & =\frac{1}{2}(5)^{2}\left(3-\frac{\theta}{2}\right) \times 10^{-6} \\
2 \theta & =3-\frac{\theta}{2} \\
\frac{5 \theta}{2}=3 \Rightarrow \theta & =\frac{6}{5}=1.2 \mathrm{rad} .
\end{aligned}
$$

SOL 7.54 Option (B) is correct.
Magnetizing current $I_{m}=\frac{250}{1}=250 \mathrm{amp}$
Primary current $I_{p}=500 \mathrm{amp}$
Secondary current $I_{s}=5 \mathrm{amp}$
Turn ratio $n=\frac{I_{p}}{I_{s}}=\frac{500}{5}=100$
Total primary current $\left(I_{T}\right)=\sqrt{\left[\text { primary current }\left(\mathrm{I}_{p}\right)\right]^{2}}+$ $\sqrt{\left[\text { magnetising current }\left(I_{\mathrm{m}}\right)\right]^{2}}$

$$
\begin{aligned}
I_{T} & =\sqrt{I_{p}^{2}+I_{m}^{2}} \\
& =\sqrt{(500)^{2}+(250)^{2}}=559.01 \mathrm{amp}
\end{aligned}
$$

Turn ratio $n^{\prime}=\frac{I_{T}}{I_{s}}=\frac{559.01}{5}=111.80$
Percentage ratio error $\Delta n=\frac{n-n^{\prime}}{n^{\prime}} \times 100$

$$
=\frac{100-111.80}{111.80} \times 100=-10.55 \%
$$

SOL 7.55 Option (C) is correct.
Power read by meter $P_{m}=V I \sin (\Delta-\phi)$
Where
$\Delta \rightarrow$ Phase angle between supply voltage and pressure coil flux.
$\phi \rightarrow$ Phase angle of load
Here

$$
\triangle=85^{\circ}, \phi=60^{\circ} \quad\{\because \cos \phi=0.5
$$

So measured power

$$
\begin{aligned}
P_{m} & =200 \times 5 \sin \left(85^{\circ}-60^{\circ}\right) \\
& =1100 \sin 25^{\circ} \\
& =464.88 \mathrm{~W}
\end{aligned}
$$

Actual power

$$
P_{0}=V I \cos \phi=220 \times 5 \times 0.5=550 \mathrm{~W}
$$

Error in measurement $=P_{m}-P_{O}=464.88-550=-85.12 \mathrm{~W}$
For unity power factor $\cos \phi=1$

$$
\phi=0^{\circ}
$$

So

$$
\begin{aligned}
& P_{m}=220 \times 5 \sin \left(85^{\circ}-0^{\circ}\right)=1095.81 \mathrm{~W} \\
& P_{O}=220 \times 5 \cos 0^{\circ}=1100
\end{aligned}
$$

Error in Measurement

$$
=1095.81-1100=-4.19 \mathrm{~W}
$$

SOL 7.56 Option (A) is correct.
We can obtain the Lissaju pattern (in X-Y mode) by following method.
For $\phi=0^{\circ}, \quad V_{\mathrm{x}}=V_{\mathrm{xm}} \sin \omega t$

$$
V_{y}=V_{y \mathrm{y}} \sin \left(\omega t+0^{\circ}\right)=\sin \omega t
$$

Draw V_{x} and V_{y} as shown below

Divide both V_{y} and V_{x} equal parts and match the corresponding points on
the screen.
Similarly for $\phi=90^{\circ}$

$$
\begin{aligned}
& V_{\mathrm{x}}=V_{\mathrm{xm}} \sin \omega t \\
& V_{\mathrm{y}}=V_{\mathrm{ym}} \sin \left(\omega t+90^{\circ}\right)
\end{aligned}
$$

Similarly for $\phi=\frac{3 \pi}{2}$

we can also obtain for $0<\phi<\frac{3 \pi}{2}$
SOL 7.57 Option (D) is correct.
GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
Published by: NODIA and COMPANY

We can obtain the Lissaju pattern (in X-Y made) by following method.

Divide the wave forms appearing an channel X and channel Y in equal parts, match the corresponding points on the screen. We would get a straight line in X - Y mode.

SOL 7.58

SOL 7.59

Option (D) is correct.
Speed (rev/sec) of the energy meter is given.

$$
\begin{aligned}
S & =K \times \text { power } \\
K & \rightarrow \text { meter constant } \\
S & =\frac{10 \mathrm{rev}}{100 \mathrm{sec}}=K \times 450 \\
K & =\frac{10 \mathrm{rev}}{\left(\frac{100 \times 450}{1000 \times 3600}\right) \mathrm{kWh}}=\frac{10 \times 1000 \times 3600}{100 \times 450} \\
& =800 \mathrm{rev} / \mathrm{kWh}
\end{aligned}
$$

SOL 7.60 Option (B) is correct.
Power in a 3-phase three wire system, with balanced load can be measured by using two wattmeters. The load may be star or delta connected.

SOL 7.61 Option (C) is correct.
Ameter configuration is given below

Here

$$
\begin{aligned}
I_{R} & =I_{m}+I_{s h} \\
500 & =100+I_{s h} \\
I_{s n} & =400 \mu \mathrm{~A} \\
\frac{I_{m}}{I_{s h}} & =\frac{R_{s h}}{R_{m}} \\
\frac{100}{400} & =\frac{R_{s h}}{100} \\
R_{s h} & =25 \Omega
\end{aligned}
$$

SOL 7.62
Option (A) is correct:
Equivalent resistance when connected in parallel is

$$
R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Let

$$
\begin{aligned}
R_{1}+R_{2} & =R_{\mathrm{sum}} \\
R & =\frac{R_{1} R_{2}}{R_{\text {sum }}}=\frac{10 \times 5}{15}=3.33 \Omega \\
\% \text { error in } R & =\Delta R_{1}(\%)+\Delta R_{2}(\%)-\Delta R_{\text {sum }}(\%) \\
\Delta R_{\text {sum }} & =(10 \pm 5 \%)+(5 \pm 10 \%) \\
& =(10 \pm 0.5)+(5 \pm 0.5)=15 \pm 0.1 \\
\Delta R_{\text {sum }}(\%) & =15 \pm \frac{1}{15} \times 100 \%=15 \pm 6.66 \% \\
\% \text { error in } R & =5 \%+10 \%-6.66 \%=8.33 \% \\
\text { value of } R & =3.33 \pm 8.33 \%=3.05 \Omega \text { to } 3.61 \Omega
\end{aligned}
$$

So

GATE Multiple Choice Questions

For Electrical Engineering

By RK Kanodia \& Ashish Murolia

Available in Two Volumes

Features:

- The book is categorized into chapter and the chapter are sub-divided into units
- Unit organization for each chapter is very constructive and covers the complete syllabus
- Each unit contains an average of 40 questions
- The questions match to the level of GATE examination
- Solutions are well-explained, tricky and consume less time. Solutions are presented in such a way that it enhances you fundamentals and problem solving skills
- There are a variety of problems on each topic
- Engineering Mathematics is also included in the book

Contents

VOLUME-1

UNI 1 ELECTRIC CIRCUITS \& FIELDS

1.1 Basic Concepts1-201.2 Graph Theory 21-42
1.3 Methods of Analysis 43-63
1.4 Circuit Theorems 64-85
1.5 Transient Response 86-113
1.6 Sinusoidal Steady State Analysis 114-131
1.7 Circuit Analysis In s-domain 132-151
1.8 Magnetically Coupled Circuits 152-171
1.9 Two-port Network 172-192
1.10 Frequency Response 193-205
1.11 Three-phase Circuits 206-218

UNIT 2 SIGNALS \& SYSTEMS

> 2.1 Continuous-Time Signals 237-261
2.2 Continuous-Time Systems 262-281
2.3 Discrete-Time Signal 282-311
2.4 Discrete-Time System 312-331
2.5 The Laplace Transform 332-344
2.6 The Z-transform 345-360
2.7 The Continuous-Time Fourier Transform 361-376
2.8 The Continuous-Time Fourier Series 377-396
2.9 Sampling 397-408

UNIT 3 ELECTRICAL MACHINES

3.1 Transformer

409-438
3.2 DC Generator 439-463
3.3 DC Motor 464-492
3.4 Synchronous Generator 493-519
3.5 Synchronous Motor 520-539
3.6 Induction Motor 540-564
3.7 Single Phase Induction Motor \& Special Purpose 565-581 Machines

UNIT 4 POWER SYSTEM

4.1 Fundamentals of Power Systems 583-607
4.2 Characteristics \& Performance of Transmission Lines 608-645
4.3 Load Flow Studies 646-659
4.4 Symmetrical Fault Analysis 660-687
4.5 Symmetrical Components \& Unsymmetrical Fault 688-715 Analysis
4.6 Power System Stability \& Protection 716-740
4.7 Power System Control 741-760

ANSWER KEY

VOLUME-2

UNIT 5 CONTROL SYSTEM

5.1 Transfer Function

5.2 Stability 25-44
5.3 Time Response 45-65
5.4 The Root-Locus Technique 66-87
5.5 Frequency Domain Analysis 88-109
5.6 Design of Control System 110-114
5.7 The State Variable Analysis 115-140
UNH 6 ELECTRICAL \& ELECTRONIC MEASUREMENTS
6.1 Measurement \& Error 143-159
6.2 Electromechanical Instruments 160-203
6.3 Instrument Transformer 204-211
6.4 Electronic \& Digital Instruments 212-218
6.5 Measurement of R, L, C \& AC Bridges 219-240
6.6 CRO 241-257
UNIT 7 ANALOG \& DIGITAL ELECTRONICS
7.1 Diode Circuits261-285
7.2 BJT Biasing \& Amplifier 286-319
7.3 FET Biasing \& Amplifier 320-342
7.4 Operational Amplifier 343-380
7.5 Number System \& Boolean Algebra 381-402
7.6 Combinational Logic Circuits 403-425
7.7 Sequential Logic Circuits 426-454
7.8 Digital Systems 455-472
7.9 Microprocessor 473-495
UNIT 8 POWER ELECTRONICS
8.1 Power Semiconductor Devices 499-509
8.2 Diode Circuits \& Rectifiers 510-516
8.3 Thyristor 517-532
8.4 Phase Controlled Converters 533-560
8.5 Choppers 561-575
8.6 Inverters 576-592
8.7 AC \& DC Drives 593-603
UNHT 9 ENGINEERING MATHEMATICS
9.1 Linear Algebra 607-626
9.2 Differential Calculus 627-650
9.3 Integral Calculus 651-671
9.4 Differential Equation 672-692
9.5 Complex Variable 693-711
9.6 Probability \& Statistics 712-730
9.7 Numerical Methods 731-745

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia \& Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as
> Over 1300 Multiple Choice Questions with full \& detailed explanations.
> Questions are graded in the order of complexity from basic to advanced level.
> Contains all previous year GATE and IES exam questions from various branches
> Each question is designed to GATE exam level.
> Step by step methodology to solve problems

Available Title In this series

Tignals and Systems (For EC and EE)
Network Analysis (For EC)-- Available in 2 Volumes
Electric Circuit and Fields (For EE) -- Available in two volumes
Electromagnetic (For EC)

Upcoming titles in this series

(1) Digital Electronics (Nov 2012)
[1] Control Systems (Dec 2012)
[a] Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE GUIDE
Theory, Example and Practice
By R. K . Kanodia \& Ashish Murolia

GATE GUIDE is an exclusive series of books which provides theory, solved examples \& practice exercises for preparing for GATE. A book of this series includes :
> Brief and explicit theory
> Problem solving methodology
> Detailed explanations of examples
> Practice Exercises

Available Title In this series

@ Signals and Systems (For EC and EE)
Network Analysis (For EC)
Electric Circuit and Fields (For EE)

Upcoming titles in this series

[a] Digital Electronics(For EC and EE)Control Systems (For EC and EE)
Communication Systems (For EC and EE)

